Example of ALMN format:
PEAK 61.50 20.45 113.50 0.00000 0.00000 0.00000 9.9 0.0
Example of AMORE format:
SOLUTIONRC 1 61.50 20.45 113.50 0.00000 0.00000 0.00000 9.9
Both of these are read in free format, i.e. at least 1 space separating all character and numeric items. Note that solutions from Phaser can be used, since they use the same Eulerian angle convention, but the exact syntax will need to be edited to conform to one of the above expected forms.
Possible keywords are -
ALMN, ANGLES, CHI, END, NUMPEAK, ORTHOG, PEAK, SPACEGROUP, TITLE
set verbose
ecalc HKLIN mrenin HKLOUT mrenin_ecalc <<EOD
TITLE ** Ecalc for mouse renin crystal. **
LABI FP=FPmrenin SIGFP=SPmrenin
EOD
amore HKLIN mrenin_ecalc HKLPCK0 mrenin_ecalc.hkl <<EOD
TITLE ** Packing h k l E for mouse renin crystal. **
SORT
LABIN FP=E
EOD
rm mrenin_ecalc.mtz
pdbset XYZIN hexpep XYZOUT hexpep_rfcell <<EOD
SPACEG P1
CELL 80 84 97
EOD
sfall XYZIN hexpep_rfcell HKLOUT hexpep_rfcell <<EOD
TITLE ** Structure factors for hexagonal pepsin in RF cell. **
MODE SFCALC XYZIN
SFSG 1
SYMM 1
RESO 20 3
EOD
ecalc HKLIN hexpep_rfcell HKLOUT hexpep_ecalc <<EOD
TITLE ** Ecalc for hexagonal pepsin model. **
LABI FP=FC
EOD
amore HKLIN hexpep_ecalc HKLPCK0 hexpep_ecalc.hkl <<EOD
TITLE ** Packing h k l E for hexagonal pepsin model. **
SORT
LABIN FP=E
EOD
rm hexpep_rfcell.mtz hexpep_ecalc.mtz
amore HKLPCK0 mrenin_ecalc.hkl HKLPCK1 hexpep_ecalc.hkl \
CLMN0 mrenin.clmn CLMN1 hexpep.clmn MAPOUT mrenin_cross \
>! mrenin_cross.log <<EOD
ROTFUN
TITLE ** Cross rotation function with E's. **
CLMN CRYST ORTH 3 RESO 20 3 SPHERE 35
CLMN MODEL 1 RESO 20 3 SPHERE 35
ROTATE CROSS MODEL 1 NPIC 20
EOD
rm mrenin_cross.map
amore HKLPCK0 mrenin_ecalc.hkl CLMN0 mrenin.clmn \
MAPOUT mrenin_self <<EOD
ROTFUN
TITLE ** Self rotation function with E's. **
ROTATE SELF NPIC 20
EOD
grep SOLUTIONRC mrenin_cross.log >! mrenin_cross.dat
rfcorr MAPIN mrenin_self PEAKS mrenin_cross.dat <<EOD
TITLE ** Mouse renin self/cross rotation function correlation. **
SPACEG p2
ORTH 3
CHI 180
EOD
The output below shows the 222 non-crystallographic symmetry. The first table
echos the 8 input peaks from the cross-rotation function. The second table
shows the positions of the 10 points in the self-rotation function above the
default threshold corresponding to the non-crystallographic 2-fold axes (chi ~=
180) that relate pairs of the highest 4 peaks, including symmetry related,
in the cross-RF. The columns labelled #Peak reference the peak numbers in the
first table. The last table shows the ~90 deg angles between these points
in the self-RF.
Peak Alpha Beta Gamma
1 61.50 20.02 113.50
2 68.33 26.06 107.24
3 112.50 154.69 289.00
4 116.00 157.55 293.50
5 103.14 88.09 166.45
6 70.12 116.85 97.56
7 67.00 105.43 97.30
8 114.90 8.17 100.72
Serial #Peak #Peak(#Symm) Theta Phi Chi self-RF
1 3 4 ( 2) 2 81 179 78.75
2 1 2 ( 2) 3 87 179 51.59
3 2 3 ( 2) 90 180 179 39.46
4 2 3 ( 1) 90 90 180 39.46
5 1 3 ( 2) 90 179 174 37.41
6 1 3 ( 1) 87 89 179 37.41
7 1 4 ( 1) 89 89 179 32.41
8 1 4 ( 2) 89 179 178 32.41
9 2 4 ( 2) 90 179 176 25.68
10 2 4 ( 1) 88 89 179 25.68
Inter-vector angles: Serial[i] Serial[j] (Symm[j]) Angle, in 4 columns.
1 2( 1) 2 1 2( 2) 5 1 3( 1) 90 1 3( 2) 90
1 4( 1) 88 1 4( 2) 89 1 5( 1) 90 1 5( 2) 89
1 6( 1) 89 1 6( 2) 86 1 7( 1) 89 1 7( 2) 87
1 8( 1) 90 1 8( 2) 89 1 9( 1) 90 1 9( 2) 89
1 10( 1) 86 1 10( 2) 90 2 3( 1) 90 2 3( 2) 90
2 4( 1) 86 2 4( 2) 87 2 5( 1) 90 2 5( 2) 90
2 6( 1) 90 2 6( 2) 84 2 7( 1) 88 2 7( 2) 86
2 8( 1) 90 2 8( 2) 89 2 9( 1) 90 2 9( 2) 89
2 10( 1) 85 2 10( 2) 89 3 4( 1) 90 3 4( 2) 90
3 5( 1) 1 3 5( 2) 1 3 6( 1) 89 3 6( 2) 89
3 7( 1) 89 3 7( 2) 89 3 8( 1) 1 3 8( 2) 1
3 9( 1) 0 3 9( 2) 1 3 10( 1) 90 3 10( 2) 90
4 5( 1) 89 4 5( 2) 89 4 6( 1) 3 4 6( 2) 2
4 7( 1) 2 4 7( 2) 1 4 8( 1) 89 4 8( 2) 89
4 9( 1) 90 4 9( 2) 90 4 10( 1) 2 4 10( 2) 3
5 6( 1) 90 5 6( 2) 90 5 7( 1) 90 5 7( 2) 90
5 8( 1) 0 5 8( 2) 1 5 9( 1) 0 5 9( 2) 1
5 10( 1) 90 5 10( 2) 90 6 7( 1) 2 6 7( 2) 4
6 8( 1) 90 6 8( 2) 90 6 9( 1) 90 6 9( 2) 90
6 10( 1) 5 6 10( 2) 1 7 8( 1) 90 7 8( 2) 90
7 9( 1) 89 7 9( 2) 89 7 10( 1) 3 7 10( 2) 1
8 9( 1) 1 8 9( 2) 1 8 10( 1) 89 8 10( 2) 89
9 10( 1) 90 9 10( 2) 90