bp3 - multivariate likelihood substructure refinement and phasing of S/MIR(AS) and/or S/MAD.
bp3 hklin foo.mtz hklout foo_out.mtz
Keyworded input
This program will refine heavy and/or anomalously scattering atomic parameters along with errors parameters to generate phase information.
The best way to start is to use the CCP4i interface or example scripts. The example scripts are straightforward to modify for most possible phasing scenarios and are given at the end of this document. If you would like to determine phases quickly, check out the PHASe keyword.
At the moment, S/MIR(AS) and SAD phasing is quite fast - MAD is a bit slow. So, it might be worth starting a first run with the PHASe keyword if you have a MAD experiment.
Note that the ordering of some keywords is important. In particular, the XTAL subkeywords (CELL, ATOM, DNAME) must be preceded by the corresponding XTAL keyword, and similarly for the ATOM and DNAME subkeywords.
The SITE keyword should be used if you have the same site in more than one crystal. The SITE keyword can not be used in combination with the FRAC subkeyword of ATOM (described below).
<a> <b> <c> <alpha> <beta> <gamma>
The format of a line of a pdb file should be the following:
HETATM 1 SE HAT 1 25.284 28.195 17.180 1.00 33.96 OR ATOM 1 SE HAT 1 25.284 28.195 17.180 1.00 33.96
The fixed format for the columns agree with the pdb format, but column 3 has to be the name of your substructure that matches an atom in $CLIBD/atomsf.lib. See file gere.pdb in the examples sub-directory for an example.
Note! The FRAC keyword can not be used in combination with the SITE keyword.
The dataset identifier. This keyword is required.
Diffraction data for the XTAL and DNAMe defined. If anomalous data is not to be used, set F and SF only. If using anomalous data, set F+, SF+, F-, SF-. Setting both F and F+ will result in an error. If only F and DANO is present in the mtz file, use the ccp4 program mtzMADmod to change F/DANO to F+/F-.
Specify f' and f'' values - the default is to use CuKa radiation. <ATOMID> MUST match an atom previously declared by the ATOM keyword.
Specify resolution limits for the given XTAL and DNAMe diffraction data. Default: use all the data available in the mtz file.
Number of bins for luzzati parameter estimation and refinement and output of statistics.
Luzzati isomorphic error parameters. The number of parameters MUST be the same as the number of BINS, or an error will result. If the NOREf keyword is given, the parameters will not be refined.
Luzzati anomalous error parameters. The number of parameters MUST be the same as the number of BINS, or an error will result. If the NOREf keyword is given, the parameters will not be refined.
Luzzati error parameters in SAD function. The number of parameters MUST be the same as the number of BINS, or an error will result. If the NOREf keyword is given, the parameters will not be refined.
Scale factor to apply to the data set to scale it relative to the reference set. The default is 1 and not to refine this parameter, as it is highly correlated to the Luzzati isomorphism parameter.
Isotropic B-factor to apply to the data set to scale it relative to the reference set. The default is 0 and not to refine, as again, it is highly correlated to the Luzzati isomorphism parameter.
The program will refine atomic and error parameters and calculates phases (default).
The program will just calculate phases with refining only atomic occupancies in the first
macro-cycle, refining occupancies and error parameters in the second macro-cycle and then
occupancies, coordinates and error parameters in the second and last macro-cycle. The
The number of cycles of refinement to perform (unless convergence is reached before) Default: 500
The minimum magnitude of the gradient vector required for convergence/termination of minimization. Default: 25
alpha and beta parameters for the Wolfe (or Amijo/Goldstein) line search conditions. Default: alpha = 0.0001, beta = 0.975
For greater numerical stability, the program by default refines just the occupancies in the first refinement cycle and then all parameters (error and atomic) in the second and final. This keyword goes directly to refining all parameters without refining occupancies and should be used in subsequent refinements using refined values of the error and atomic coordinates.
<outputname> is the string associated with the pdb file, crank XML and script file that bp3 writes out.. The default <outputname> is "heavy".
Increase the number of nodes (i.e. points of evaluation for numerical integration) for the CENTric integral and the acentric PHASe and AMPLitude integral. Default: CENTRic = 5, PHASe = 25, AMPLitude = 5, SAD = 30.
Parameter giving value of FOBSref/SIGFref (i.e. f over sigma for the reference data set) of when to switch from one dimensional numerical integration to two dimensional integration for acentric reflections. Therefore, if THREshold is less than or equal to ZERO, only one dimensional (phase) integration will be performed. Or, if THREshold is very large (i.e. 100000), a two dimensional integration (both amplitude and phase) will be done. Default: 4.
Only refine and phase acentric reflections. For testing purposes only.
Only refine and phase centric reflections. Possibly useful, but not recommended.
Title to be added to the mtz file. Default: "Phasing from BP3".
Specify amount of information to be outputted (where n is a positive integer). n = 0 is the normal output, n = 1 is more output and n = 2 is for debugging purposes. Default: n = 0.
Example (1)
#!/bin/sh
set -e
# Phasing the rnase using Pt sites only.
# See Sevcik, Dodson and Dodson, Acta Cryst. B47 240 (1991)
bp3 HKLIN $CEXAM/rnase/rnase25.mtz \
HKLOUT $CCP4_SCR/rnase_phase_mir.mtz << eof-bp3
# native crystal
Xtal NATIVE
DName NATIVE
COLUmn F=FNAT SF=SIGFNAT
# platinum derivative
Xtal Platinum
ATOM Pt
XYZ 0.566 0.828 0.018
OCCU 0.2
BISO 25.0
ATOM Pt
XYZ 0.842 0.944 0.469
OCCU 0.2
BISO 25.0
ATOM Pt
XYZ 0.103 0.941 0.189
OCCU 0.2
BISO 25.0
ATOM Pt
XYZ 0.190 0.005 0.742
OCCU 0.2
BISO 25.0
ATOM Pt
XYZ 0.047 0.848 0.273
OCCU 0.2
BISO 25.0
DNAME Plat
COLUmn F=FPTNCD25 SF=SIGFPTNCD25
# Note! - to add anomalous data, run mtzMADmod to get F+/F-
# then, input F+ and F- columns to bp3
ALLIn
eof-bp3
##############################################################
#!/bin/sh
set -e
bp3 HKLIN $CEXAM/tutorial/data/gere_MAD.mtz \
HKLOUT $CCP4_SCR/gere_MAD_phase.mtz << eof-bp3
# selenium
Xtal DER1
ATOM Se
XYZ 0.567606 0.19651 0.117643
OCCU 0.5
BISO 25.0
ATOM Se
XYZ 0.637982 0.0428475 0.217668
OCCU 0.5
BISO 25.0
ATOM Se
XYZ 0.469871 0.255659 0.23827
OCCU 0.5
BISO 25.0
ATOM Se
XYZ 0.49385 0.188126 0.41977
OCCU 0.5
BISO 25.0
ATOM Se
XYZ 0.794401 0.401274 0.137605
OCCU 0.5
BISO 25.0
ATOM Se
XYZ 0.716238 0.238362 0.0869784
OCCU 0.5
BISO 25.0
ATOM Se
XYZ 0.259739 0.00855349 0.239787
OCCU 0.5
BISO 25.0
ATOM Se
XYZ 0.343637 0.168551 0.319304
OCCU 0.5
BISO 25.0
ATOM Se
XYZ 0.173773 -0.0720953 0.391003
OCCU 0.5
BISO 25.0
ATOM Se
XYZ 0.179076 0.0804735 0.520765
OCCU 0.5
BISO 25.0
ATOM Se
XYZ 0.926494 0.231291 0.18954
OCCU 0.5
DNAME PEAK
COLUmn F+=F(+)SEpeak SF+=SIGF(+)SEpeak F-=F(-)SEpeak SF-=SIGF(-)SEpeak
FORM Se FP=-4.0 FPP=4.0
ALLIn
eof-bp3
##############################################################
#!/bin/sh
set -e
bp3 HKLIN $CEXAM/toxd/toxd.mtz \
HKLOUT $CCP4_SCR/toxd_phase_mir.mtz \
<< eof-bp3
# native crystal
Xtal NATIVE
Dname NATIVE
COLUmn F=FTOXD3 SF=SIGFTOXD3
# silver derivative
Xtal SILVER
ATOM Au
XYZ 0.177 0.104 -0.114
OCCU 0.2
BISO 30.0
ATOM Au
XYZ 0.218 0.138 -0.105
OCCU 0.2
BISO 30.0
DNAMe AU
COLUmn F=FAU20 SF=SIGFAU20
# Note! - to add anomalous data, run mtzMADmod to get F+/F-
# then, input F+ and F- columns to bp3
# mercury derivative
XTAL MERCURY
ATOM Hg+2
XYZ 0.180 0.294 0.089
OCCU 0.2
BISO 30.0
DNAMe HG
COLUmn F=FMM11 SF=SIGFMM11
# iodine derivative
Xtal IODINE
ATOM I-1
XYZ 0.491 0.370 0.487
OCCU 0.2
BISO 30.0
DNAMe IO
COLUmn F=FI100 SF=SIGFI100
ALLIn
eof-bp3
##############################################################
# Example 4
# 2 wavelength MAD
#!/bin/sh
set -e
bp3 HKLIN $CEXAM/tutorial/data/gere_MAD_nat.mtz \
HKLOUT $CCP4_SCR/gere_MAD_phase.mtz << eof-bp3
# MAD data
Xtal DER1
ATOM Se
XYZ 0.567606 0.19651 0.117643
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.637982 0.0428475 0.217668
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.469871 0.255659 0.23827
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.49385 0.188126 0.41977
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.794401 0.401274 0.137605
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.716238 0.238362 0.0869784
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.259739 0.00855349 0.239787
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.343637 0.168551 0.319304
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.173773 -0.0720953 0.391003
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.179076 0.0804735 0.520765
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.926494 0.231291 0.18954
OCCU 0.5
BISO 50.0
DNAME PEAK
COLUmn F+=F_peak(+) SF+=SIGF_peak(+) F-=F_peak(-) SF-=SIGF_peak(-)
FORM Se FP=-4.0 FPP=4.0
DNAME INFL
COLUmn F+=F_infl(+) SF+=SIGF_infl(+) F-=F_infl(-) SF-=SIGF_infl(-)
FORM Se FP=-6.0 FPP=2.0
ALLIn
# phase keyword to make things faster!
PHASe
eof-bp3
##############################################################
# Example 5
# 3 wavelength MAD + native
#!/bin/sh
set -e
bp3 HKLIN $CEXAM/tutorial/data/gere_MAD_nat_scaleit1.mtz \
HKLOUT $CCP4_SCR/gere_MAD_phase.mtz << eof-bp3
# MAD data + natve
# always define MAD "derivative" crystal first!
Xtal DER1
ATOM Se
XYZ 0.567606 0.19651 0.117643
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.637982 0.0428475 0.217668
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.469871 0.255659 0.23827
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.49385 0.188126 0.41977
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.794401 0.401274 0.137605
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.716238 0.238362 0.0869784
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.259739 0.00855349 0.239787
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.343637 0.168551 0.319304
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.173773 -0.0720953 0.391003
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.179076 0.0804735 0.520765
OCCU 0.5
BISO 50.0
ATOM Se
XYZ 0.926494 0.231291 0.18954
OCCU 0.5
BISO 50.0
DNAME PEAK
COLUmn F+=F_peak(+) SF+=SIGF_peak(+) F-=F_peak(-) SF-=SIGF_peak(-)
FORM Se FP=-4.0 FPP=4.0
DNAME INFL
COLUmn F+=F_infl(+) SF+=SIGF_infl(+) F-=F_infl(-) SF-=SIGF_infl(-)
FORM Se FP=-6.0 FPP=2.0
DNAME HRM
COLUmn F+=F_hrm(+) SF+=SIGF_hrm(+) F-=F_hrm(-) SF-=SIGF_hrm(-)
FORM Se FP=-3.0 FPP=1.0
# This version of BP3 will just ignore the NATIVE in MAD phasing, so you might as well
# comment this out!
! Xtal Native
! DNAME native
! COLUMN F=F_native SF=SIGF_native
ALLIn
# phase keyword to make things faster!
PHASe
eof-bp3
Last modified: Tue Dec 6 21:14:39 CET 2005